
EVERY STEP YOU TAKE
Profiling the System

Jamie Levy (gleeda)

Purpose
• DFIR investigations spanning multiple machines
• Provides a mechanism for cutting up the data into smaller

digestible chunks

• Make use of mechanisms from the disk forensics realm:

•  Baselining/Whitelisting/Blacklisting
•  Indicators of Compromise (IOCs)

•  CybOX
•  Profiling

Baselines
•  In order to find changes or irregularities you first need to

know “what’s normal”
• Create a baseline from a clean production system

•  Software installed
•  Versions

•  Files
•  Executables
•  DLLs
•  Modules

•  Registry keys
•  Services

Baselines (continued)
• Memory only

•  Able to see what’s normal during a running state
•  Processes and heritage, services, loaded DLLs, modules etc

•  Able to capture “normal” hooks (AV SSDT hooks)
•  Caveat: Not all software is running, there may be different files in

use at different states of running software
•  Volatility plugin: profiler

• Disk
•  Able to fill-in the gaps for some missing information during runtime

(DLLs, exes etc)
•  Baseliner EnScript

•  Able to “diff” registry keys from disk
•  Quicker
•  No swapped keys

•  regdiff.py

Caveat: Hook comparisons
• Some of the items that we want to examine include

hooked code (SSDT hooks, ApiHooks).
•  The assembly will include memory addresses, so we need

regex comparisons (Yara)
• Painful to do by hand if there are many hooks/jumps

(though not impossible)
•  So we’ll automate this as well…

• Evil?

These are actually
Symantec Hooks

Hook comparisons (continued)
•  If you have legitimate software (like AV) that makes

hooks, the hooks are often the same (for the same
OS)and therefore can be whitelisted

Whitelisting/Blacklisting
• Once we have our baseline it’s easy to see if a machine

has items running that are not included in it
•  Could be maintained as a list and output items not in the list

• We can also use “known bad” items as a blacklist and see
if these items are found on the machine
•  Could be maintained as a list and items found from this list are

output

(We can probably do better though…)

Indicators of Compromise (IOCs)
• Artifacts of interest to indicate malware is present on a

machine
• Contains logic

•  Useful for combining several artifacts
•  Adds flexibility and helps remove false positives

• Able to share indicator packages

• CybOX:
•  https://github.com/CybOXProject/python-cybox
•  Python bindings
•  Able to convert OpenIOCs to CybOX format
•  Easier to control programmatically

Cyboxer Plugin
• Uses the python-cybox library
• Needs a single CybOX xml file or a directory of xml files
•  If supported memory objects are found (including their

appropriate logic), the title from each xml file and items
found are printed

• Supported items:
•  Process names
•  IP addresses/domains
•  Mutexes
•  Open(ed) files
•  Services
•  Registry Keys/Values

Cyboxer Plugin Example

Profiling
• Allows us to answer various things about the system.
• Can follow a system over time to see if things changed
• Can answer specific questions about the system:

Ø A list of items that are “normal”
Ø A list of items that are “abnormal”
Ø Is software X installed?

Ø What version?
Ø What artifacts are left after installing software X?
Ø What artifacts are left after running malware X?

Ø Create a CybOX package for sharing IOCs

Profiling (continued)
• So it’s easy to answer some of these questions for one

machine at a time, but suppose you want to examine
several states of the same machine over time or several
machines at once.

• What is needed is a way to categorize each machine into
a separate collection of interesting items

• Each machine will have a “profile”
•  The profile code can be used offline or imported for use

with Volatility

Profiles
• A and B represent two different machines (can be more)
• Each machine contains its own baseline of items (profiles)

•  Processes (and heritage)
•  Services
•  SSDTs (yara sigs)
•  Connections
•  ApiHooks (yara sigs)
•  DLLs
•  EXEs
•  Mutexes
•  Modules (modules)
•  Drivers (driver objects)
•  Registry keys
•  …

A B

Set Difference
• New set with elements in A but not B
• Useful for removing items from the baseline (whitelist)
• A – B = A’

‘ A B .’

Union
• New set with elements from both A and B
• Good for combining baselines into one
• A | B

B A | B

Intersection
• New set with elements common to both A and B
• Useful for finding items that are common between multiple

machines
•  Example: IOCs

• A & B

A B

Symmetric Difference
• New set with elements from either A or B, but not both
• Useful for finding items that are unique to each machine
• A ^ B

A B ^ B

Multiple Profiles
• We can use this logic

against several machines
at once

• Each machine (or each
software/malware sample)
has its own profile

• We can combine them or
use differences/
intersections to see their
relationships

• Profiles have different
output options:
•  Text, JSON, CybOX and

Profile (Python code)

Profiler Plugin
•  The profiler plugin basically collects all of these things

about the machine and outputs them in one of the
following outputs:
•  Text
•  JSON
•  CybOX
•  Profile

•  This plugin can be inherited and extended to use other
profiles using any of the previously mentioned logic

Profiler Plugin (continued)
• Observing various states of Symantec AV
• Create the profiles:

-c ClassName for
profile

--output=profile
makes sure to save

the output as a
profile

Profiler Plugin (continued)
•  Let’s see the difference between a fresh install and an

update:

Profiler Plugin (continued)
• We can combine all these profiles into one large

Symantec profile:

• We can then use this profile in a more specific “profiler”
plugin

Symantecprofiler Plugin

Either show me
things in the profile
(&) or exclude them

(-)

Profiler Plugin Discussion
• We can use the same idea to profile and monitor live

machines
•  Imagine you have a baseline of machines in the

enterprise
• You can use F-Response or EnCase to sample a machine

live and subtract the baseline to see if anything stands out
• You can then take that output and feed the legit items

back into your baseline or create a new “blacklist” profile
or CybOX package

CybOX (IOC) generation
• You can easily generate CybOX observables with the

profile code
• Methodology:

Ø  Create a baseline for your machine for before the malware is run
Ø  Then print the CybOX output for the difference of the new profile

and the baseline profile

You can also
combine multiple

profiles for the
baseline

DEMO

Jack Crook DFIR Challenge
•  http://blog.handlerdiaries.com/?p=14
•  There are 4 machines in this challenge (WinXPSP3x86

and Win2003SP0x86)
•  For just a quick overview, we can take each of these

machines, generate profiles and then subtract out
baseline profiles for each of these operating systems

Ø  It is important to note that if a baseline profile is created
from similar machines beforehand, there more whitelisted
items will be removed

Processes
Process: ctfmon.exe, Parent: explorer.exe, Commandline: "C:\WINDOWS\system32\ctfmon.exe"
Process: msimn.exe, Parent: explorer.exe, Commandline: "C:\Program Files\Outlook Express\msimn.exe"
Process: explorer.exe, Parent: mdd.exe, Commandline: C:\WINDOWS\Explorer.EXE
Process: ismserv.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\ismserv.exe
Process: ps.exe, Parent: cmd.exe, Commandline: ps \\172.16.223.47 -accepteula -c c:\windows\webui\system5.bat
Process: wc.exe, Parent: svchost.exe, Commandline: wc.exe -e -o h.out
Process: srvcsurg.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\serverappliance\srvcsurg.exe
Process: svchost.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\svchost.exe -k iissvcs
Process: cmd.exe, Parent: explorer.exe, Commandline: "C:\WINDOWS\system32\cmd.exe"
Process: msmsgs.exe, Parent: explorer.exe, Commandline: "C:\Program Files\Messenger\msmsgs.exe" /background
Process: ps.exe, Parent: cmd.exe, Commandline: ps \\172.16.223.47 -accepteula -c c:\windows\webui\system4.bat
Process: ntfrs.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\ntfrs.exe
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o iis-memdump.bin
Process: ps.exe, Parent: cmd.exe, Commandline: ps \\172.16.223.47 -accepteule cmd /c ipconfig
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o callb-memdump.bin
Process: PSEXESVC.EXE, Parent: services.exe, Commandline: C:\WINDOWS\PSEXESVC.EXE
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o dc-memdump.bin
Process: inetinfo.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\inetsrv\inetinfo.exe
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o c:\memdump-amirs.bin
Process: wins.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\wins.exe
Process: dns.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\dns.exe
Process: POP3Svc.exe, Parent: services.exe, Commandline: c:\windows\system32\pop3server\pop3svc.exe
Process: appmgr.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\serverappliance\appmgr.exe

We only have 23
processes to go

through instead of
44

Processes
Process: ctfmon.exe, Parent: explorer.exe, Commandline: "C:\WINDOWS\system32\ctfmon.exe"
Process: msimn.exe, Parent: explorer.exe, Commandline: "C:\Program Files\Outlook Express\msimn.exe"
Process: explorer.exe, Parent: mdd.exe, Commandline: C:\WINDOWS\Explorer.EXE
Process: ismserv.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\ismserv.exe
Process: ps.exe, Parent: cmd.exe, Commandline: ps \\172.16.223.47 -accepteula -c c:\windows\webui\system5.bat
Process: wc.exe, Parent: svchost.exe, Commandline: wc.exe -e -o h.out
Process: srvcsurg.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\serverappliance\srvcsurg.exe
Process: svchost.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\svchost.exe -k iissvcs
Process: cmd.exe, Parent: explorer.exe, Commandline: "C:\WINDOWS\system32\cmd.exe"
Process: msmsgs.exe, Parent: explorer.exe, Commandline: "C:\Program Files\Messenger\msmsgs.exe" /background
Process: ps.exe, Parent: cmd.exe, Commandline: ps \\172.16.223.47 -accepteula -c c:\windows\webui\system4.bat
Process: ntfrs.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\ntfrs.exe
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o iis-memdump.bin
Process: ps.exe, Parent: cmd.exe, Commandline: ps \\172.16.223.47 -accepteule cmd /c ipconfig
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o callb-memdump.bin
Process: PSEXESVC.EXE, Parent: services.exe, Commandline: C:\WINDOWS\PSEXESVC.EXE
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o dc-memdump.bin
Process: inetinfo.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\inetsrv\inetinfo.exe
Process: mdd.exe, Parent: cmd.exe, Commandline: mdd.exe -o c:\memdump-amirs.bin
Process: wins.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\wins.exe
Process: dns.exe, Parent: services.exe, Commandline: C:\WINDOWS\System32\dns.exe
Process: POP3Svc.exe, Parent: services.exe, Commandline: c:\windows\system32\pop3server\pop3svc.exe
Process: appmgr.exe, Parent: services.exe, Commandline: C:\WINDOWS\system32\serverappliance\appmgr.exe

This would be even
more obvious if we

had more true
baselines

Executables
c:\windows\psexesvc.exe
c:\windows\system32\cmd.exe
c:\mdd.exe
c:\windows\system32\pop3server\pop3svc.exe
c:\windows\system32\wc.exe
c:\windows\system32\inetsrv\inetinfo.exe
c:\windows\system32\ctfmon.exe
c:\windows\system32\ntfrs.exe
c:\windows\system32\serverappliance\srvcsurg.exe
c:\windows\webui\ps.exe
c:\program files\messenger\msmsgs.exe
c:\windows\system32\wins.exe
c:\windows\system32\dns.exe
c:\windows\system32\serverappliance\appmgr.exe
c:\itshare\mdd.exe
c:\program files\outlook express\msimn.exe
c:\windows\system32\ismserv.exe

We only have 17
exes to go through

instead of 31

Again, this would be
even more obvious if

we had more true
baselines

DLLs
c:\windows\system32\imm32.dll
c:\windows\system32\ismsmtp.dll
c:\windows\system32\msctf.dll
c:\windows\system32\6to4ex.dll
c:\windows\system32\ntdsbsrv.dll
c:\windows\system32\iismap.dll
c:\windows\system32\ddraw.dll
[snip]

Backdoor DLL
stands out in only a

handful of DLLs

Jack Crook DFIR Challenge
• Now we have a starting point in our investigation
• We have:

Ø Several processes of interest
Ø Several files of interest
Ø A DLL of interest
Ø Plus several API Hooks that we can also investigate (not shown)

• We can easily see which machines have these items of
interest and investigate them more thoroughly as needed

• Also, one of the machines was not compromised, so we
shouldn’t find these items of interest in its profile

Conclusion
We can see how we can use profiling in order to:

Ø Figure out artifacts from installed software/malware
Ø Create CybOX IOC packages from VMs/sandboxes
Ø Easily use profiles to find relationships between machine

or software/malware artifacts
Ø Quickly cut through lots of data to find outliers

Questions?

Email: jamie.levy@gmail.com
Twitter: @gleeda

Upcoming trainings:
Ø  November 11th-15th 2013: Reston, VA
Ø  January 20th-24th 2014: San Diego, CA
Ø  June 9th-13th 2014: London, UK

References
• CybOX http://cybox.mitre.org/
•  Leveraging CybOX with Volatility

http://volatility-labs.blogspot.com/2013/09/leveraging-
cybox-with-volatility.html

• Python sets http://docs.python.org/2/library/sets.html
• Baseliner EnScript

https://github.com/gleeda/misc-scripts/blob/master/
EnScripts/Baseliner.EnScript

