
Public

EXTERNAL

Volatility Past & Present
Creating a more stable volatility

Mike Auty - Senior Security Researcher
MWR Infosecurity

Labs.mwrinfosecurity.com | © MWR Labs 1

1 of 29

Public

EXTERNAL

Contents

Introduction
Objects
Address Spaces
Profiles
Looking Ahead
Summary

·
·
·
·
·
·

Labs.mwrinfosecurity.com | © MWR Labs 2

2 of 29

Public

EXTERNAL

Why now?
Why work on Volatility 3.0 instead of 2.4?

We can make changes to:

Big breaks are tough on the community
Volatility 2 has limitations
Offers the opportunity for large changes

·
·
·

Coding style
Core Interface
Internal architecture

·
·
·

Labs.mwrinfosecurity.com | © MWR Labs 3

3 of 29

Public

EXTERNAL

What was so bad about volatility 2.x?
Amazingly, nothing major!

However, Volatility 2.x was originally written:

With only XP support
Before we knew how the object model would work
out
With certain assumptions for simplification
Many years ago!

·
·

·
·

Labs.mwrinfosecurity.com | © MWR Labs 4

4 of 29

Public

EXTERNAL

The Volatility Generic Architecture
Three primary components:*

Objects

Address Spaces

Profiles

·
These defined how to read and interpret chunks
of data from memory

-

·
These defined how to map from one chunk of
memory to another

-

·
These held all the symbols, in a single space,
and some architecture-specific details (x86, x64,
arm, etc)

-

* Using the Volatility 2.x naming scheme

Labs.mwrinfosecurity.com | © MWR Labs 5

5 of 29

Public

EXTERNAL

Goals for Volatility 3.0
Stable API

For volatility 3.x, we want:

Basically, improving from past experience!

Python 3.x
A well-designed, well-defined interface
Fewer limitations imposed by the codebase
Speed improvements
Explicit error handling

·
·
·
·
·

Labs.mwrinfosecurity.com | © MWR Labs 6

6 of 29

Public

EXTERNAL

Objects
The cookie cutters

Labs.mwrinfosecurity.com | © MWR Labs 7

7 of 29

Public

EXTERNAL

Objects
Volatility 2.x Proxied Objects

It had some drawbacks:

Always read the data live
Tried very hard to be resilient
Proxied all standard calls to look like an object

·
·
·

class BaseObject(object):
 def v(self):
 ...
 def m(self, memname):
 ...
 def d(self):
 ...

PYTHON

It made overloaded operator ordering important
We have lots of code with int(VolObject)

·
·

Labs.mwrinfosecurity.com | © MWR Labs 8

8 of 29

Public

EXTERNAL

Objects
Proposed Objects

Native Python Types

An example, the proposed Volatility Integer:

Turns out you can inherit from Native types, but...·
NativeTypes are immutable
Requires overriding __new__

-
-

class Integer(PrimitiveObject, int):
 """Primitive Object that handles standard numeric types"""
 def __new__(cls, context, layer_name, offset, symbol_name, struct_format
 value = cls._struct_value(struct_format, context, layer_name, offset
 return int.__new__(cls, value)

PYTHON

Labs.mwrinfosecurity.com | © MWR Labs 9

9 of 29

Public

EXTERNAL

Objects
Exceptions & None Objects

NoneObjects were designed as a convenience

This was a really lazy "solution":

From now on:

Any error led to a NoneObject where all methods
returned itself

·

Still had to check for NoneObjects rather than
exceptions
No one knew how to diagnose the issues, so still
required debugging
Didn't solve any of the problems it was supposed to!

·

·

·

We always throw exceptions when necessary
The developer has to be aware of things like zread...

·
·

...and their consequences!-

Labs.mwrinfosecurity.com | © MWR Labs 10

10 of 29

Public

EXTERNAL

Objects
Constructing objects

Previously objects were curried

Currying is now explicit by using ObjectTemplates

All objects were traversed at profile load
Made debugging difficult
Required constructing dummy objects to determine
values

·
·
·

They can hold attributes (eg, structure size)
They can be interrogated for their contents
ReferenceTemplates allow delayed symbol lookup

·
·
·

Labs.mwrinfosecurity.com | © MWR Labs 11

11 of 29

Public

EXTERNAL

Objects
Proposed API - Objects

class ObjectInterface(validity.ValidityRoutines):
 """ A base object required to be the ancestor of every object used in volatility """
 def __init__(self, context, layer_name, offset, symbol_name, size, parent
 """Initialize the object"""
 def write(self, value):
 """Writes the new value into the format at the offset the object currently resides
 def cast(self, new_symbol_name):
 """Returns a new object at the offset and from the layer that the current object i

PYTHON

class Template(object):
 def __init__(self, symbol_name = None, **kwargs):
 """Stores the keyword arguments for later use"""
 self.arguments = kwargs
 self.symbol_name = symbol_name
 def update_arguments(self, **newargs):
 """Updates the keyword arguments"""
 def __call__(self, context, layer_name, offset, parent = None):
 """Constructs the object"""

PYTHON

Labs.mwrinfosecurity.com | © MWR Labs 12

12 of 29

Public

EXTERNAL

Objects
Proposed API - Templates

class ObjectTemplate(interfaces.objects.Template, validity.ValidityRoutines
 def __init__(self, object_class = None, symbol_name = None, **kwargs
 """Initializes the object with the object class and symbol_name"""
 @property
 def size(self):
 """Returns the size of the template"""
 @property
 def children(self):
 """A function that returns a list of child templates of a template"""
 def replace_child(self, old_child, new_child):
 """A function for replacing one child with another"""

PYTHON

class ReferenceTemplate(interfaces.objects.Template):
 """Factory class that produces objects based on a delayed reference type"""
 def __call__(self, context, *args, **kwargs):
 template = context.symbol_space.resolve(self._symbol_name)
 return template(context = context, *args, **kwargs)

PYTHON

Labs.mwrinfosecurity.com | © MWR Labs 13

13 of 29

Public

EXTERNAL

Address Spaces
The dough

Labs.mwrinfosecurity.com | © MWR Labs 14

14 of 29

Public

EXTERNAL

Address Spaces
Nomenclature

The name's pretty good, but people didn't know how to
work with them

A more accurate name would be TranslationLayers

The layers will be grouped in a Memory container

For example, the original CrashDump was a
CrashDumpFile Address Space
People couldn't grasp what vtop (v-top?) meant very
easily

·

·

A TranslationLayer can have multiple sources
Leaf-nodes are called DataLayers

·
·

Labs.mwrinfosecurity.com | © MWR Labs 15

15 of 29

Public

EXTERNAL

Address Spaces
Multiple Sources

Labs.mwrinfosecurity.com | © MWR Labs 16

Kernel
Intel x64

CrashDump

File

Process 4
Intel x64

Process 204
Intel x64

User

Kernel
Intel x64

CrashDump

File

Process 4
Intel x64

Process 204
Intel x64

File

Volatility 2.x Volatility 3.x
User

Co
nt

ex
t

16 of 29

Public

EXTERNAL

Address Spaces
Proposed API

class DataLayerInterface(validity.ValidityRoutines):
 def __init__(self, context, name):
 """Initializes the DataLayer with a name"
 def is_valid(self, offset):
 """Returns a boolean based on whether the offset is valid or not"""
 def read(self, offset, length, pad = False):

"""Reads an offset for length bytes and returns 'bytes' (not 'str') of length siz
 def write(self, offset, data):
 """Writes a chunk of data at offset"""

PYTHON

class TranslationLayerInterface(DataLayerInterface):
 def translate(self, offset):
 """Returns a tuple of (offset, layer) translating of input domain to the output ra
 def mapping(self, offset, length):
 """Returns a sorted list of (offset, mapped_offset, length, layer) mappings"""
 def dependencies(self):
 """Returns a list of layer names that this layer translates onto"""

PYTHON

Labs.mwrinfosecurity.com | © MWR Labs 17

17 of 29

Public

EXTERNAL

Profiles
The kitchen Drawer

Labs.mwrinfosecurity.com | © MWR Labs 18

18 of 29

Public

EXTERNAL

Profiles
Design

Profiles weren't named well. What is a Profile?

Profiles are now SymbolSpaces made up of individual
SymbolTables

This should allow us to mix and match table
implementations

A self-referential dictionary/table of symbols
Information about the architecture

·
·

Only one SymbolSpace at a time

Each SymbolTable can have its own native table
CStructs members will stay as strictly offset-based

·
...built-up as necessary from the config-

·
·

Labs.mwrinfosecurity.com | © MWR Labs 19

19 of 29

Public

EXTERNAL

Profiles
Symbol Tables

Labs.mwrinfosecurity.com | © MWR Labs 20

tcpip!_TCP_LISTENER
ObjectTemplate

ntkrnl!_EPROCESS
ObjectTemplate

ntkrnl VTypeTabletcpip PDBTable

tcpip!_TCP_LISTENER
ObjectTemplate

SymbolSpace

ntkrnl!_EPROCESS
ObjectTemplate

ntkrnl!_EPROCESS
ReferenceTemplate

tcpip!_TCP_LISTENER
Object

ntkrnl!_EPROCESS
ObjectTemplate

tcpip!_TCP_LISTENER
Object

ntkrnl!_EPROCESS
Object

template = symbolspace.resolve("tcpip!_TCP_LISTENER")

listener = template(context, layer, offset, ...)

proc = listener.Owner

20 of 29

Public

EXTERNAL

Profiles
Proposed API - SymbolSpace

class SymbolSpace(collections.Mapping):
 def __init__(self, native_symbols):
 """Handles an ordered collection of SymbolTables"""
 @property
 def natives(self):
 """Returns the native_types for this symbol space"""
 def resolve(self, symbol):
 """Takes a symbol name and resolves it (dealing with ReferenceTemplates)"""
 def append(self, value):
 """Adds a symbol_list to the end of the space"""
 def remove(self, key):
 """Removes a named symbol_list from the space"""

PYTHON

Labs.mwrinfosecurity.com | © MWR Labs 21

21 of 29

Public

EXTERNAL

Profiles
Proposed API - SymbolTables

class SymbolTableInterface(validity.ValidityRoutines):
 def __init__(self, name, native_symbols = None):
 """Handles a table of symbols"""
 def resolve(self, symbol):
 """Resolves a symbol name into an object template"""

 @property
 def symbols(self):
 """Returns an iterator of the symbol names"""
 @property
 def natives(self):
 """Returns None or a symbol_space for handling space specific native types"""

 ... set/get/del symbol_class ...

 ... readonly dict methods ...

PYTHON

Labs.mwrinfosecurity.com | © MWR Labs 22

22 of 29

Public

EXTERNAL

Looking Ahead
The Rest of the Kitchen

Labs.mwrinfosecurity.com | © MWR Labs 23

23 of 29

Public

EXTERNAL

Looking Ahead
Unified Plugin Output

Labs.mwrinfosecurity.com | © MWR Labs 24

A (int) B (unicode) C (str list)

List/Tree Hybrid

24 of 29

Public

EXTERNAL

Looking Ahead
Same Old Problems

Instantiating objects in the wrong layer

Architecture information and metadata

·
Leaning towards requiring explicit dereferencing
of pointers
Possibly attach the native layer to the Memory
object?
Go whole hog and allow multiple "location"
layer/offset pairs?

-

-

-

·
What sort of information do plugins require to
work?
Which is associated with the architecture rather
than the OS?

-

-

Labs.mwrinfosecurity.com | © MWR Labs 25

25 of 29

Public

EXTERNAL

Looking Ahead
More of the Same Old Problems

Allowing developers the freedom to modify the
framework

Handling of 64-bit pointers

·

Their changes may be useful to lots of plugins
Don't want people pushing "use volatility and my
patches"
Don't want people disrupting existing plugins

-
-

-
·

Maybe easier now that pointers are integers
Either chop the bits off the top...
...or follow the sign extension rule

-
-
-

Labs.mwrinfosecurity.com | © MWR Labs 26

26 of 29

Public

EXTERNAL

Summary

Labs.mwrinfosecurity.com | © MWR Labs 27

27 of 29

Public

EXTERNAL

Summary
Volatility 3.x is already in development!
There will be some big changes, but hopefully all for
the best
Just the tip of the iceberg:

·
·

·
Plugin framework
Unified Plugin Output
Configuration
Command Line Interface
Scanning framework
Memory Factories
More complex objects
Convert all the core plugins
etc

-
-
-
-
-
-
-
-
-

Labs.mwrinfosecurity.com | © MWR Labs 28

28 of 29

Public

EXTERNAL

Questions?

email mike.auty@gmail.com
twitter @volatility
www volatility.googlecode.com/

Labs.mwrinfosecurity.com | © MWR Labs 29

29 of 29

