MWR Public

[LABS EXTERNAL

Creating a more stable volatility

Labs.mwrinfosecurity.com | © MWR Labs




Public
EXTERNAL

Introduction
Objects

Address Spaces
Profiles
Looking Ahead
Summary

Labs.mwrinfosecurity.com | © MWR Labs




MWR Public

LABS EXTERNAL

Why now?
Why work on Volatility 3.0 instead of 2.4?

- Big breaks are tough on the community
- Volatility 2 has limitations
- Offers the opportunity for large changes

We can make changes to:

- Coding style
- Core Interface
- Internal architecture

Labs.mwrinfosecurity.com | © MWR Labs 3

30f29



MWR Public

LABS EXTERNAL

What was so bad about volatility 2.x?

Amazingly, nothing major!
However, Volatility 2.x was originally written:

- With only XP support

- Before we knew how the object model would work
out

- With certain assumptions for simplification
* Many years ago!

Labs.mwrinfosecurity.com | © MWR Labs 4

4 of 29



[ MWR Public

LABS EXTERNAL

The Volatility Generic Architecture

Three primary components:*

- Objects

- These defined how to read and interpret chunks
of data from memory

- Address Spaces

- These defined how to map from one chunk of
memory to another

- Profiles

- These held all the symbols, in a single space,
and some architecture-specific details (x86, x64,
arm, etc)

* Using the Volatility 2.x naming scheme

Labs.mwrinfosecurity.com | © MWR Labs 5

50f29



MWR Public

LABS EXTERNAL

Goals for Volatility 3.0
Stable API

For volatility 3.x, we want:

 Python 3.x

- A well-designed, well-defined interface

- Fewer limitations imposed by the codebase
- Speed improvements

- Explicit error handling

Basically, improving from past experience!

Labs.mwrinfosecurity.com | © MWR Labs 6

6 of 29



Public
EXTERNAL

Objects

The cookie cutters

Labs.mwrinfosecurity.com | © MWR Labs




8 of 29

[ MWR Public

LABS EXTERNAL

Objects

Volatility 2.x Proxied Objects

- Always read the data live
- Tried very hard to be resilient
- Proxied all standard calls to look like an object

It had some drawbacks:

class BaseObject(object): PYTHON

def v(self):
def m(self, memname):

def d(self):

- It made overloaded operator ordering important
- We have lots of code with int(VolObject)

Labs.mwrinfosecurity.com | © MWR Labs 8



9 of 29

LABS EXTERNAL

[ MWR Public

Objects

Proposed Objects

Native Python Types

- Turns out you can inherit from Native types, but...
- NativeTypes are immutable
- Requires overriding __new__

An example, the proposed Volatility Integer:

class Integer(PrimitiveObject, int): PYTHON
"""Primitive Object that handles standard numeric types"""

def _ new_ (cls, context, layer name, offset, symbol name, struct f
value = cls. struct value(struct format, context, layer name, o

return int._ new_ (cls, value)

Labs.mwrinfosecurity.com | © MWR Labs 9



MWR Public

LABS EXTERNAL

Objects

Exceptions & None Objects

NoneObjects were designed as a convenience

- Any error led to a NoneObject where all methods
returned itself

This was a really lazy "solution”:

- Still had to check for NoneObjects rather than
exceptions

- No one knew how to diagnose the issues, so still
required debugging

- Didn't solve any of the problems it was supposed to!

From now on:

- We always throw exceptions when necessary
- The developer has to be aware of things like zread...
- ...and their consequences!

Labs.mwrinfosecurity.com | © MWR Labs 10

10 of 29



MWR Public

LABS EXTERNAL

Objects

Constructing objects

Previously objects were curried

- All objects were traversed at profile load
- Made debugging difficult

- Required constructing dummy objects to determine
values

Currying is now explicit by using ObjectTemplates

- They can hold attributes (eg, structure size)
- They can be interrogated for their contents
- ReferenceTemplates allow delayed symbol lookup

Labs.mwrinfosecurity.com | © MWR Labs 11

11 of 29



12 of 29

MWR Public

LABS EXTERNAL

Objects
Proposed API - Objects

class ObjectInterface(validity.ValidityRoutines):
""" A base object required to be the ancestor of every object used
def ___init__ (self, context, layer name, offset, symbol name, size,
"""Initialize the object"""
def write(self, value):
"""Writes the new value into the format at the offset the objec

def cast(self, new_symbol name):
"""Returns a new object at the offset and from the layer that t

class Template(object): PYTHON

def init (self, symbol name = None, **kwargs):
"""Stores the keyword arguments for later use"""
self.arguments = kwargs
self.symbol name = symbol name

def update_arguments(self, **newargs):
"""Updates the keyword arguments"""

def _ call_(self, context, layer name, offset, parent = None):

"""Constructs the object"""

Labs.mwrinfosecurity.com | © MWR Labs 12



13 of 29

MWR Public

LABS EXTERNAL

Objects

Proposed API - Templates

class ObjectTemplate(interfaces.objects.Template, valiyRout
def init (self, object class = None, symbol name = None, **kwarg
"""Initializes the object with the object class and symbol name
@property
def size(self):
"""Returns the size of the template"""
@property
def children(self):
"""A function that returns a list of child templates of a templ
def replace_child(self, old_child, new _child):

A function for replacing one child with another"""

class ReferenceTemplate(interfaces.objects.Template):
"""Factory class that produces objects based on a delayed reference
def _ call__ (self, context, *args, **kwargs):
template = context.symbol space.resolve(self. symbol name)
return template(context = context, *args, **kwargs)

Labs.mwrinfosecurity.com | © MWR Labs 13



Public
EXTERNAL

Address Spaces

The dough

Labs.mwrinfosecurity.com | © MWR Labs




MWR Public

LABS EXTERNAL

Address Spaces

Nomenclature

The name’s pretty good, but people didn't know how to
work with them

- For example, the original CrashDump was a
CrashDumpFile Address Space

- People couldn't grasp what vtop (v-top?) meant very
easily

A more accurate name would be TranslationLayers

- A TranslationLayer can have multiple sources
- Leaf-nodes are called DatalLayers

The layers will be grouped in a Memory container

Labs.mwrinfosecurity.com | © MWR Labs 15

15 of 29



MWR Public

LABS EXTERNAL

Address Spaces

Multiple Sources

Volatility 2.x Volatility 3.x

Labs.mwrinfosecurity.com | © MWR Labs 16

16 of 29



17 of 29

MWR Public

LABS EXTERNAL

Address Spaces
Proposed API

class DatalLayerInterface(validity.ValidityRoutines):
def init (self, context, name):
"""TInitializes the DatalLayer with a name"
def is_valid(self, offset):
"""Returns a boolean based on whether the offset is valid or no
def read(self, offset, length, pad = False):
"""Reads an offset for length bytes and returns 'bytes' (not ':
def write(self, offset, data):

Writes a chunk of data at offset

class TranslationLayerInterface(DataLayerInterface): PYTHON

def translate(self, offset):
"""Returns a tuple of (offset, layer) translating of input doma
def mapping(self, offset, length):
"""Returns a sorted list of (offset, mapped offset, length, lay
def dependencies(self):
"""Returns a list of layer names that this layer translates ont
Labs.mwrinfosecurity.com | © MWR Labs 17



Public
EXTERNAL

Profiles

The kitchen Drawer

Labs.mwrinfosecurity.com | © MWR Labs

18 of 29




19 of 29

MWR Public

LABS EXTERNAL

Profiles
Design

Profiles weren't named well. What is a Profile?

- A self-referential dictionary/table of symbols

- Information about the architecture
Profiles are now SymbolSpaces made up of individual
SymbolTables

- Only one SymbolSpace at a time

- ...built-up as necessary from the config
- Each SymbolTable can have its own native table
- CStructs members will stay as strictly offset-based

This should allow us to mix and match table
implementations

Labs.mwrinfosecurity.com | © MWR Labs 19



MWR Public

LABS EXTERNAL

Profiles
Symbol Tables

Saisr |

template = symbolspace resolve("tcpip!_TCP_LISTENER")

_TCP_LISTENER ntkenl!_EPROCESS
Object

Labs.mwrinfosecurity.com | © MWR Labs 20

20 of 29



MWR Public

LABS EXTERNAL

Profiles
Proposed API - SymbolSpace

class SymbolSpace(collections.Mapping):
def __init_ (self, native_symbols):
"""Handles an ordered collection of SymbolTables"""
@property
def natives(self):

Returns the native types for this symbol space"""
def resolve(self, symbol):

Takes a symbol name and resolves it (dealing with ReferenceT
def append(self, value):

"""Adds a symbol list to the end of the space"""
def remove(self, key):

Removes a named symbol list from the space"""

Labs.mwrinfosecurity.com | © MWR Labs 21

21 of 29



MWR Public

LABS EXTERNAL

Profiles
Proposed API - SymbolTables

class SymbolTableInterface(validity.ValidityRoutines):
def __init (self, name, native_symbols = None):
"""Handles a table of symbols"""
def resolve(self, symbol):

Resolves a symbol name into an object template"""

@property
def symbols(self):
"""Returns an iterator of the symbol names"""
@property
def natives(self):

Returns None or a symbol space for handling space specific n
... set/get/del symbol class ...

... readonly dict methods ...

Labs.mwrinfosecurity.com | © MWR Labs 22

22 of 29



Public
EXTERNAL

Looking Ahead

The Rest of the Kitchen

Labs.mwrinfosecurity.com | © MWR Labs




MWR Public

LABS EXTERNAL

Looking Ahead
Unified Plugin Output

List/Tree Hybrid

Labs.mwrinfosecurity.com | © MWR Labs 24

24 of 29



MWR Public

LABS EXTERNAL

Looking Ahead

Same Old Problems

- Instantiating objects in the wrong layer

- Leaning towards requiring explicit dereferencing
of pointers

- Possibly attach the native layer to the Memory
object?

- Go whole hog and allow multiple "location”
layer/offset pairs?

- Architecture information and metadata

- What sort of information do plugins require to
work?

- Which is associated with the architecture rather
than the OS?

Labs.mwrinfosecurity.com | © MWR Labs 25

25 of 29



MWR Public

LABS EXTERNAL

Looking Ahead

More of the Same Old Problems

- Allowing developers the freedom to modify the
framework

- Their changes may be useful to lots of plugins

- Don't want people pushing “use volatility and my
patches”

- Don't want people disrupting existing plugins
- Handling of 64-bit pointers

- Maybe easier now that pointers are integers

- Either chop the bits off the top...

- ...or follow the sigh extension rule

Labs.mwrinfosecurity.com | © MWR Labs 26

26 of 29



Public
EXTERNAL

Summary

Labs.mwrinfosecurity.com | © MWR Labs




MWR Public

LABS EXTERNAL

Summary

- Volatility 3.x is already in development!

- There will be some big changes, but hopefully all for
the best

- Just the tip of the iceberg:
- Plugin framework
- Unified Plugin Output
- Configuration
- Command Line Interface
- Scanning framework
- Memory Factories
- More complex objects
- Convert all the core plugins
- etc

Labs.mwrinfosecurity.com | © MWR Labs 28

28 of 29



Public
EXTERNAL

VeLyLTy

Questions?

email mike.auty@gmail.com
twitter @volatility
www  volatility.googlecode.com/

Labs.mwrinfosecurity.com | © MWR Labs




